Skip to content

Distcrete Structures

注意

离散数学笔记为早年学习笔记直接搬运 不保证准确性与合理性

Topics[1]

  • Logic and proofs
  • Set, functions, sequences, and summations
  • Counting
  • Relations
  • Graph theory
  • Tree
  • Boolean algebra

Logic and Proofs

Propositional logic

Truth table

(Given a proposition, draw the truth table)

Logical operators

Conjunction ∧
Disjunction ∨
Exclusive OR ⊕ Implication

Propositional equivalence

Laws

  1. De Morgan’s laws (否定拆括号取反)
  2. Distributive(分配) laws
  3. pq=¬pq

Tautology and contradiction

Given two propositions, prove they are equivalent

Predicates

Universal quantification
Existential quantification
Translate a sentence to a logical expression

Proofs

Inference rules 推理规则

(prove or disprove an argument)

  • 肯定前件推理 p(pq)q
  • 否定后件推理 ¬q(pq)¬p
  • 析取三段论
  • 假说演绎推理
  • 归结推理

Argument

  • Valid argument
  • Invalid argument

Proof methods

direct proofs

Indirect proofs

Proof by contraposition(非非反) Proof by contradiction

Existence proof (constructive and non-constructive)

Uniqueness proof (two steps)

存在且仅存在一个
假设存在两个满足,然后证明两个相等

Sets, Functions, Sequences and Summations

Sets

Subset

子集,空集,非空真子集,真子集

Powerset

(P(S)=A∣A⊆S)

Cardinality

集合元素个数,特别有|P(S)|=2n

Cartesian product(笛卡尔积)

全部组合

Set operations

Set identity

(prove two sets are the same)

  • De Morgan’s Law

Laws and membership table

0,1表

Functions

One-to-one functions (injection)

单射,一一对应

Onto functions (surjection)

满射,全部y都有x

One-to-one and onto functions (bijection)

单加满

Special functions

  • Ceiling function上
  • Floor function下

Sequences and summations

Countings

Rules

Product rule

乘法原理

Sum rule

加法原理

隔板法

Principles

Inclusion-exclusion principle

容斥

Pigeonhole principle

抽屉原理(ceil(n/k))

Permutation and combination

P(n,r)=n!/(nr)!

Recurrence relation

C(n,r)=n!/[(nr)!r!]

Construct a recurrence relation

Solve a recurrence relation

an=c1an1+c2an2r2c1rc2=0an=k1r1n+k2r2n

Relations

Representing relations

There are several other ways to represent relations

  • Tables
  • Matrices
  • Graphs

Relations on a set

A relation on the set is a relation from 𝐴 to 𝐴

Reflexive

(a,a) belongs to R for all element in A

Symmetric

对称

Anti-symmetric

反对称

Transitive

传递性

Equivalence relation

Equivalence relation and Partition

Equivalence relation ⇔ Partition

Prove a relation is an equivalence relation.

Reflexive Symmetric Transitive

Given an equivalence relation, list equivalent classes (give the partition)

Graph Theory

Graph

Definition

G=(V,E)

Representing graphs (adjacency matrix, adjacency list, and sketch)

Isomorphism

  1. 邻接矩阵
  2. $bijection f:V_1 \rightarrow V_2: \forall a,b \in V_1((a,b)\in E_1 \leftrightarrow (f(a),f(b))\in E_2) $

Eular path and Eular circuit

containing every edge (simple path)
欧拉回路:each vertex has even degree
欧拉路径在连通multi: exactly 2 vertices of odd degree

Hamilton path and Hamilton circuit

each vertex once

Ore’s theorem

If for every pair of nonadjacent vertices u and v in the simple graph G with n vertices, deg(u) + deg(v) ≥ n ,then has a Hamilton circuit.

Dirac’s theorem

If the degree of each vertex is great than or equals n/2 in the connected simple graph G with n vertices where n ≥ 3, then G has a Hamilton circuit.

Planar graphs

r=e–v+2

Euler’s Formula

G is a connected planar simple graph

  • v ≥ 3, then e ≤ 3v – 6
  • G has a vertex of degree not exceeding 5
  • if v>=3 and no circuits of length 3,then e<=2v-4

Trees

Tree traversal

Preorder traversal

中左1右

In-order traversal

左1中右

Post-order traversal

左1右中

Expression forms (conversion among the different forms)

关键 Internal vertices(非叶子节点) represent operations
Leaves(叶子节点) represent the variables or numbers

Infix

prefix

postfix

Spanning tree

DFS

回溯(字母序)

BFS

都走(字母序,不重复)

Boolean Algebra

Boolean expressions

.product
+sum
-complement

Boolean identities

换成逻辑表达式再换回来记忆

min-term(最小项)

A min-term of Boolean variables x1, x2, ⋯ ,xn is a Boolean product of literals[2] y1y2 , ⋯ , yn where yi (1 ≤ i ≤ n ) is either xi or complement of xi Each min-term has exactly one literal for every variable.

DNF

任何命题公式,最终都能够化成 ( A 1 ∧ A 2 ) ∨ ( A 3 ∧ A 4 )的形式,这种先 ∧ 合 取 再 ∨ 析 取 的范式,被称为 “析取范式”。

DNF is the unique sum of min-terms of the variables in the expression,Also called sum of products expansion

SOP是DNF的化简,DNF是SOP的扩展[3]

Maxterms(最大项)

A max-term of Boolean variables x1, x2, ⋯ , is the sum of literals y1 + y2+, ⋯ ,yn + where (1 ≤ i ≤ n) is either xi or complement of xi

CNF

任何命题公式,最终都能够化成 ( A 1 ∨ A 2 ) ∧ ( A 3 ∨ A 4 ) 的形式,这种先 ∨ 析 取 再 ∧ 合 取 的范式,被称为 “ 合取范式”。

POS同上

If we have DNF for $\overline F $, then get CNF from $\overline{\overline F} $

Equivalence of expressions

Funtion completeness

can represent {+ . ——} using Operate O

Logic circuits

Logic gates

LogicGate.PNG Buffer.PNG

Logic circuits

Karnaugh maps[4]

KarnaughMap.PNG 1、取大不取小,圈越大,消去的变量越多,与项越简单,能画入大圈就不画入小圈;
2、圈数越少,化简后的与项就越少;
3、一个最小项可以重复使用,即只要需要,一个方格可以同时被多圈所圈

Steps in designing a logic circuit

Step2design.PNG


  1. 推荐阅读 ↩︎

  2. A literal is a Boolean variable or its complement. ↩︎

  3. 有些书上定义DNF为SOP,将SOP的扩展叫做CDNF,本文不采用这种定义 ↩︎

  4. 可以参考 ↩︎